Dr. Alexis Bordet - Multifunctional Catalytic Systems

Vita

EngineerUniversity of Toulouse/INP ENSIACET (2010-2013)
M. Sc.
University of Toulouse (2012-2013)
Ph.D.University of Toulouse/LPCNO (Dr. Bruno Chaudret), France (2013-2016)
Post-Doc RWTH Aachen University (Prof. Dr. Walter Leitner), Germany (2017-2018)
Group Leader 'Multifunctional Catalytic Systems', MPI CEC (seit 2018)

Publications

Full publications list | ORCID

Selected MPI CEC publications

 

  • Kreissl, H., Jin, J., Lin, S.-H., Schütte, D., Störtte, S., Levin, N., Chaudret, B., Vorholt, A., Bordet, A. Leitner, W. (2021). Commercial Cu2Cr2O5 Decorated with Iron Carbide Nanoparticles as Multifunctional Catalyst for Magnetically Induced Continuous Flow Hydrogenation of Aromatic Ketones. Angewandte Chemie, International Edition in English, (xx), xx-xx. doi:10.1002/anie.202107916.
  • Zenner, J., Moos, G., Luska, K. L., Bordet, A.,Leitner, W. (2021). Rh NPs Immobilized on Phosphonium- based Supported Ionic Liquid Phases (Rh@SILPs) as Hydrogenation Catalysts. Chimia,75(9), 724-732. doi:10.2533/chimia.2021.724.
  • Bordet, A., El Sayed, S., Sanger, M., Boniface, K. J., Kalsi, D., Luska, K. L., Jessop, P.; Leitner,W. (2021). Selectivity control in hydrogenation through adaptive catalysis using ruthenium nanoparticles on a CO2-responsive support. Nature chemistry. doi:10.1038/s41557-021-00735-w.
  • Bordet, A., Leitner, W. (2021). Metal Nanoparticles Immobilized on Molecularly Modified Surfaces: Versatile Catalytic Systems for Controlled Hydrogenation and Hydrogenolysis. Accounts of Chemical Research, (xxx), xxx-xxx. doi:10.1021/acs.accounts.1c00013.
  • Rengshausen, S., Van Stappen, C., Levin, N., Tricard, S., Luska, K.L., DeBeer, S., Chaudret, B., Bordet, A., Leitner, W. (2021). Organometallic Synthesis of Bimetallic Cobalt‐Rhodium Nanoparticles in Supported Ionic Liquid Phases (CoxRh100−x@SILP) as Catalysts for the Selective Hydrogenation of Multifunctional Aromatic Substrates Small,17, 2006683 (10pp) https://doi.org/10.1002/smll.202006683
  • Bordet, A., Moos, G., Welsh, C., Licence, P., Luska K.L., Leitner, W. (2020). Molecular Control of the Catalytic Properties of Rhodium Nanoparticles in Supported Ionic Liquid Phase (SILP) Systems ACS Catalysis 10(23), 13904-13912. https://doi.org/10.1021/acscatal.0c03559
  • Kacem, S., Emondts, M., Bordet, A., Leitner, W.(2020). Selective hydrogenation of fluorinated arenes using rhodium nanoparticles on molecularly modified silica Catalysis Science & Technology 10(23), 8120-8126. https://doi.org/10.1039/D0CY01716G
  • Goclik, L., Offner-Marko, L., Bordet, A., Leitner, W.(2020). Selective Hydrodeoxygenation of Hydroxyacetophenones to Ethyl-Substituted Phenol Derivatives Using a FeRu@SILP Catalyst Chemical Communications 56(66), 9509-9512. https://doi.org/10.1039/D0CC03695A
  • Chatterjee, B., Kalsi, D., Kaithal, A., Bordet, A., Leitner, W., Gunanathan, C. (2020). One-pot dual catalysis for the hydrogenation of heteroarenes and arenes Catalysis Science & Technology. https://doi.org/10.1039/D0CY00928H
  • Moos, G., Emondts, M., Bordet, A., Leitner, W. (2020). Selective Hydrogenation and Hydrodeoxygenation of Aromatic Ketones to Cyclohexane Derivatives Using a Rh@SILP Catalyst Angewandte Chemie International Edition 59(29), 11977-11983. https://doi.org/10.1002/anie.201916385
  • El Sayed, S., Bordet, A., Weidenthaler, C., Hetaba, W., Luska, K., Leitner, W. (2020) Selective Hydrogenation of Benzofurans using Lewis Acid Modified Ruthenium-SILP Catalysts ACS Catalysis 10(3), 2124-2130. https://doi.org/10.1021/acscatal.9b05124

Group members

Postdocs

Dr. Chenhui Han
Dr. Deepti Kalsi
Dr. Natalia Levin Rojas
Dr. Alexandre Sodreau

PhD students

Lisa Goclik
Souha Kacem
Sheng-Hsiang Lin
Savarithai Jenani Louis Anandaraj
Nataliia Marchenko (Guest)
Peter Schlichter
Johannes Zenner (Guest)

Lab staff

Norbert Dickmann
Henrik Walschus
Julia Zerbe

Research in Multifunctional Catalytic Systems

In the “Multifunctional Catalytic Systems” group, we focus on the synthesis, characterization, and application in catalysis of metallic nanoparticles immobilized on molecularly modified surfaces (NPs@MMS, Figure 1). We are especially interested in combining molecular design (molecular modifier structure) and nanoparticle design to produce innovative catalytic systems providing control over the activation mode of dihydrogen (H2).

Molecular modifiers commonly used in our group include small organic molecules, ionic liquids, and polymers. Metal nanoparticles (e.g. Mn, Fe, Co, Ni, Ru, Rh, and bimetallic) are synthesized through the decomposition of organometallic precursors directly in the MMS under mild conditions. This organometallic approach provides a fine control over the nanoparticles size, dispersion, and in the case of bimetallic nanoparticles, composition. In addition, this insures a close contact between the metal NPs and the molecular modifiers, leading to high NPs stability and strong synergistic effects.

The resulting NPs@MMS systems are fully tunable, and a rational choice of the individual parameters (nature of the metal nanoparticles, molecular modifier and its functionality, support) allows producing multifunctional catalytic systems with tailor-made reactivity. Selective hydrogenation and hydrodeoxygenation reactions are specifically targeted, with applications including fine chemical synthesis, biomass conversion and CO2 valorization.

Besides purely chemical functions, we are also interested in the development of multifunctional catalysts combining chemical and physical functionalities (e.g. magnetic properties), with the idea to go towards switchable and adaptive catalytic systems.