Dr. Alexander Schnegg - EPR Research Group


Dipl.-Phys. Free University Berlin (1998)
Dr. rer. nat. Institut für Experimentalphysik, Free University Berlin (1999-2003)
Postdoc Max Planck Institute for Bioinorganic Chemistry; today: MPI CEC (2004-2005)
Postdoc Helmholtz Zentrum Berlin für Materialien und Energie (HZB) (2006-2013)
Staff Scientist HZB's EPR lab (2013-2018)
Adjunct Professor Monash University, Melbourne, Australia (since 2016)
Research group leader MPI CEC (since 2018)

Full publications list

Selected MPI CEC publications

  • Sharma, M. K., Chabbra, S., Wölper, C., Weinert, H. M., Reijerse, E. J., Schnegg, A.,  Schulz, S. (2022). Modulating the frontier orbitals of L(X)Ga-substituted diphosphenes [L(X)GaP](2) (X = Cl, Br) and their facile oxidation to radical cations. Chemical Science, 13(43), 12643-12650. doi:10.1039/d2sc04207j.
  • Yang, X., Reijerse, E. J., Bhattacharyya, K., Leutzsch, M., Kochius, M., Nöthling, N., Busch, J., Schnegg, A., Auer, A. A., Cornella, J. (2022). Radical Activation of N-H and O-H Bonds at Bismuth(II). Journal of the American Chemical Society, (144), 16535-16544. doi:10.1021/jacs.2c05882.
  • Lohmiller, T., Spyra, C.-J., Dechert, S., Demeshko, S., Bill, E., Schnegg, A., Meyer, F. (2022). Antisymmetric Spin Exchange in a mu-1,2-Peroxodicopper(II) Complex with an Orthogonal Cu-O-O-Cu Arrangement and S = 1 Spin Ground State Characterized by THz-EPR. JACS Au, 2(5), 1134-1143. doi:10.1021/jacsau.2c00139.
  • Teucher, M., Sidabras, J. W.,  Schnegg, A. (2022). Milliwatt three- and four-pulse double electron electron resonance for protein structure determination. Physical Chemistry Chemical Physics, (24), 12528-12540. doi:10.1039/d1cp05508a.
  • Chatterjee, S., Harden, I., Bistoni, G., Castillo, R. G., Chabbra, S., van Gastel, M., Schnegg, A., Bill, E., Birrell, J. A., Morandi, B., Neese, F., DeBeer, S. (2022). A Combined Spectroscopic and Computational Study on the Mechanism of Iron-Catalyzed Aminofunctionalization of Olefins Using Hydroxylamine Derived N-O Reagent as the "Amino" Source and "Oxidant". Journal of the American Chemical Society, 144(6), 2637-2656. doi:10.1021/jacs.1c11083.
  • Liu, C., Geer, A. M., Webber, C., Musgrave, C., Gu, S., Johnson, G., Dickie, D. A., Chabbra, S., Schnegg, A., Zhou, H., Sun, C.-J., Hwang, S., Goddard III, W. A., Zhang, S., Gunnoe, T. B. (2021). Immobilization of "Capping Arene" Cobalt(II) Complexes on Ordered Mesoporous Carbon for Electrocatalytic Water Oxidation. ACS Catalysis, (11), 15068-1508 DOI: 10.1021/acscatal.1c04617
  • Shin, D., Bhandari, S., Tesch, M. F., Bonke, S. A., Jaouen, F., Chabbra, S., Pratsch, C., Schnegg, A., Mechler, A. K. (2022). Reduced formation of peroxide and radical species stabilises iron-based hybrid catalysts in polymer electrolyte membrane fuel cells. Journal of Energy Chemistry, 65, 433-438. doi:10.1016/j.jechem.2021.05.047 .
  • Büker, J., Alkan, B., Chabbra, S., Kochetov, N., Falk, T., Schnegg, A., Schulz,C., Wiggers, H., Muhler, M., Peng, B. (2021). Liquid-Phase Cyclohexene Oxidation with O-2 over Spray-Flame-Synthesized La1-xSrxCoO3 Perovskite Nanoparticles. SI, 27(68), 16912-16923. doi:10.1002/chem.202103381.
  • Nehrkorn, J. P., Valuev, I. A., Kiskin, M. A., Bogomyakov, A. S., Suturina, E. A., Sheveleva, A. M., Ovcharenko, V., Holldack, K.,Herrmann, C., Fedin, M. V., Schnegg, A., Veber, S.L. (2021) Easy-plane to easy-axis anisotropy switching in a Co(ii) single-ion magnet triggered by the diamagnetic lattice. Journal of Materials Chemistry C, (xx), 1-7. doi:10.1039/d1tc01105g.
  • Ott, J. C., Suturina, E. A., Kuprov, I., Nehrkorn, J., Schnegg, A., Enders, M., Lutz, H.G. (2021). Observability of paramagnetic NMR signals at over 10 000 ppm chemical shifts. Angewandte Chemie, International Edition in English, (60), 22856-22864. doi:10.1002/anie.202107944.
  • Zhao, G., Bonke, S. A., Schmidt, S., Wang, Z., Hu, B., Falk, T., Hu, Y., Rath, T ., Xia, W ., Peng, B., Schnegg, A., Weng, Y., Muhler, M.(2021). Highly Efficient and Selective Aerobic Oxidation of Cinnamyl Alcohol under Visible Light over Pt-Loaded NaNbO3 Enriched with Oxygen Vacancies by Ni Doping. ACS Sustainable Chemistry & Engineering, 9(15), 5422-5429. doi:10.1021/acssuschemeng.1c00460.
  • Shin, D., Bhandari, S., Tesch, M. F., Bonke, S. A., Jaouen, F., Chabbra, S., Pratsch, C., Schnegg, A., Mechler, A.K. (2022). Reduced formation of peroxide and radical species stabilises iron-based hybrid catalysts in polymer electrolyte membrane fuel cells. Journal of Energy Chemistry, 65, 433-438. doi.org/10.1016/j.jechem.2021.05.047 .
  • Bone, A. N., Widener, C. N., Moseley, D. H., Liu, Z., Lu, Z., Cheng, Y., Daemen, L. L, Ozerov, M.,Telser, J., Thirunavukkuarasu, K., Smirnov, D., Greer, S. M.,  Hill, Stephen., Krzystek, J., Holldack, K., Aliabadi, A., Schnegg, A., Dunbar, K. R., Xue, Zi-Ling (2021). Applying Unconventional Spectroscopies to the Single-Molecule Magnets, Co(PPh3)(2)X-2 (X=Cl, Br, I): Unveiling Magnetic Transitions and Spin-Phonon Coupling. Chemistry – A European Journal, (xx), 1-7. doi:10.1002/chem.202100705.
  • Tarrago, M., Römelt, C., Nehrkorn, J., Schnegg, A., Neese, F., Bill, E.,  Ye, S. (2021). Experimental and Theoretical Evidence for an Unusual Almost Triply Degenerate Electronic Ground State of Ferrous Tetraphenylporphyrin. Inorganic chemistry. doi:10.1021/acs.inorgchem.1c00031.
  • Nehrkorn, J. P., Greer, S. M., Malbrecht, B. J., Anderton, K. J., Azat Aliabadi, K., Schnegg, A.,  Holldack, K., Herrmann, C., Betley, T., Stoll, S., Hill, S. (2021). Spectroscopic Investigation of a Metal–Metal-Bonded Fe6 Single-Molecule Magnet with an Isolated S = 19/2 Giant-Spin Ground State. Inorganic Chemistry, (xxx), xxx-xxx. doi:10.1021/acs.inorgchem.0c03595.
  • Pavlov, A.A., Nehrkorn, J., Zubkevich, S.V., Fedin, M.V., Holldack, K., Schnegg, A., Novikov, V.V. (2020). A Synergy and Struggle of EPR, Magnetometry and NMR: A Case Study of Magnetic Interaction Parameters in a Six-Coordinate Cobalt(II) Complex Inorganic Chemistry 59(15), 10746-10755. https://doi.org/10.1021/acs.inorgchem.0c01191
  • Viciano-Chumillas, M., Blondin, G., Clémanceym N., Krzystek, J., Ozerov, M., Armentano, D., Schnegg, A., Lohmiller, T., Telser, J., Lloret, F., Cano, J. (2020). Single‐Ion Magnetic Behaviour in an Iron(III) Porphyrin Complex: A Dichotomy Between High‐Spin and 5/2−3/2 Spin Admixture Chemistry – A European Journal 26(62), 14242-14251. https://doi.org/10.1002/chem.202003052
  • Jochim, A., Lohmiller, T., Rams, M., Böhme, M., Ceglarska, M., Schnegg, A., Plass, W., Näther, C. (2020). Influence of the Coligand onto the Magnetic Anisotropy and the Magnetic Behavior of One-Dimensional Coordination Polymers Inorganic Chemistry 59(13), 8971-8982. https://doi.org/10.1021/acs.inorgchem.0c00815
  • Lin, Y.-H., Kutin, Y., van Gastel, M., Bill, E., Schnegg, A., Ye, S., Lee, W.-Z. (2020). A Manganese(IV)-Hydroperoxo Intermediate Generated by Protonation of the Corresponding Manganese(III)-Superoxo Complex Journal of the American Chemical Society.  https://doi.org/10.1021/jacs.0c02756
  • Böhme, M., Jochim, A., Rams, M., Lohmiller, T., Suckert, S., Schnegg, A., Plass, W., Näther, C. (2020). Variation of the Chain Geometry in Isomeric 1D Co(NCS)2 Coordination Polymers and Their Influence on the Magnetic Properties Inorganic Chemistry 59(8), 5325-5338. https://doi.org/10.1021/acs.inorgchem.9b03357
  • Ma, Y., Pang, Y., Chabbra, S., Reijerse, E.J., Schnegg, A., Niski, J., Leutzsch, M., Cornella, J. (2020). Radical C‒N Borylation of Aromatic Amines Enabled by a Pyrylium Reagent Chemistry – A European Journal 26(17), 3734-3743. https://doi.org/10.1002/chem.202000412
  • Krzystek, J., Schnegg, A., Aliabadi, A., Holldack, K., Stoian, S.A., Ozarowski, A., Hicks, S.D., Abu Omar, M.M., Thomas, K.E., Ghosh, A., Caulfield, K.P., Tonzetich, Z.J., Telser, J. (2020). Advanced Paramagnetic Resonance Studies on Manganese and Iron Corroles with a Formal d4 Electron Count Inorganic Chemistry 59(2), 1075-1090. https://doi.org/10.1021/acs.inorgchem.9b02635
  • Li, J., Chen, J., Sang, R., Ham, W.-S., Plutschack, M.B., Berger, F., Chabbra, S., Schnegg, A., Genicot, C., Ritter, T. (2020). Photoredox catalysis with aryl sulfonium salts enables site-selective late-stage fluorination Nature Chemistry 12, 56-62. https://doi.org/10.1038/s41557-019-0353-3
  • Rams, M., Jochim, A., Böhme, M., Lohmiller, T., Ceglarska, M., Rams, M.M., Schnegg, A., Plass, W., Näther, C. (2020). Single‐Chain Magnet Based on Cobalt(II) Thiocyanate as XXZ Spin Chain Chemistry – A European Journal 26(13), 2837-2851. https://doi.org/10.1002/chem.201903924
  • Kutin, Y., Cox, N., Lubitz, W., Schnegg, A., Rüdiger, O. (2019). In Situ EPR Characterization of a Cobalt Oxide Water Oxidation Catalyst at Neutral pH Catalysts 9(11), 926. https://doi.org/10.3390/catal9110926
  • Nehrkorn, J., Bonke, S.A., Aliabadi, A., Schwalbe, M., Schnegg, A. (2019). Examination of the Magneto-Structural Effects of Hangman Groups on Ferric Porphyrins by EPR Inorganic Chemistry 58(20), 14228-14237. https://doi.org/10.1021/acs.inorgchem.9b02348
  • Sidabras, J., Duan, J., Winkler, M., Happe, T., Hussein, R., Zouni, A., Suter, D., Schnegg, A., Lubitz, W., Reijerse, E.J. (2019) Extending electron paramagnetic resonance to nanoliter volume protein single crystals using a self-resonant microhelix Science Advances 5(10), eaay1394. https://doi.org/10.1126/sciadv.aay1394
  • Cheng, J., Liu, J., Leng, X., Lohmiller, T., Schnegg, A., Bill, E., Ye, S., Deng, L. (2019). A Two-Coordinate Iron(II) Imido Complex with NHC Ligation: Synthesis, Characterization, and Its Diversified Reactivity of Nitrene Transfer and C–H Bond Activation Inorganic Chemistry 58, 7634-6744. https://doi.org/10.1021/acs.inorgchem.9b01147
  • Zhao, G., Busser, G.W., Froese, C., Hu, B., Bohnke, S.A., Schnegg, A., Ai, Y., Wei, D., Wang, X., Peng, B., Muhler, M. (2019). Anaerobic Alcohol Conversion to Carbonyl Compounds Over Nanoscaled Rh-doped SrTiO3 under Visible Light The Journal of Physical Chemistry Letters 10, 2075–2080. https://doi.org/10.1021/acs.jpclett.9b00621
  • Nehrkorn, J., Veber, S.L., Zhukas, L.A., Novikov, V.N., Nelyubina, Y.V., Voloshin, Y.Z, Holldach, K., Stoll, S., Schnegg, A. (2018). Determination of Large Zero-Field Splitting in High-Spin Co(I) Clathrochelates Inorganic Chemistry 57(24), 15330-15340. https://doi.org/10.1021/acs.inorgchem.8b02670

  • Sharma, M. K., Chabbra, S., Wölper, C., Weinert, H. M., Reijerse, E. J., Schnegg, A.,  Schulz, S. (2022). Modulating the frontier orbitals of L(X)Ga-substituted diphosphenes [L(X)GaP](2) (X = Cl, Br) and their facile oxidation to radical cations. Chemical Science, 13(43), 12643-12650. doi:10.1039/d2sc04207j.
  • Yang, X., Reijerse, E. J., Bhattacharyya, K., Leutzsch, M., Kochius, M., Nöthling, N., Busch, J., Schnegg, A., Auer, A. A., Cornella, J. (2022). Radical Activation of N-H and O-H Bonds at Bismuth(II). Journal of the American Chemical Society, (144), 16535-16544. doi:10.1021/jacs.2c05882.
  • Sanchez, M. L. K., Wiley, S., Reijerse, E. J., Lubitz, W., Birrell, J. A., Dyer, R. B. (2022). Time-Resolved Infrared Spectroscopy Reveals the pH-Independence of the First Electron Transfer Step in the [FeFe] Hydrogenase Catalytic Cycle. The Journal of Physical Chemistry Letters, 13(25), 5986-5990. doi:10.1021/acs.jpclett.2c01467.
  • e Vaillant, F., Calbet, A. M., Gonzalez-Pelayo, S., Reijerse, E. J., Ni, S., Busch, J., Cornella, J. (2022). Catalytic synthesis of phenols with nitrous oxide. Nature, (604), 677-685. doi:10.1038/s41586-022-04516-4.
  • Pelmenschikov, V., Birrell, J. A., Gee, L. B., Richers, C. P., Reijerse, E. J., Wang, H., Arragain, S.; Mishra, N.; Yoda, Y.; Matsuura, H .;Li, L .; Tamasaku, K.; Rauchfuss, T. B.; Lubitz, W., Cramer, S. P. (2021). Vibrational Perturbation of the [FeFe] Hydrogenase H-Cluster Revealed by (CH)-C-13-H-2-ADT Labeling. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 143(22), 8237-8243. doi:10.1021/jacs.1c02323.
  • Caserta, G., et al., Engineering an [FeFe]-Hydrogenase: Do Accessory Clusters Influence O2 Resistance and Catalytic Bias? J Am Chem Soc, 2018. 140(16): p. 5516-5526.
  • Chongdar, N., et al., Unique Spectroscopic Properties of the H-Cluster in a Putative Sensory FeFe Hydrogenase. Journal of the American Chemical Society, 2018. 140(3): p. 1057-1068.
  • Dayan, N., et al., Advanced surface resonators for electron spin resonance of single microcrystals. Review of Scientific Instruments, 2018. 89(12).
  • Kinauer, M., et al., An iridium(iii/iv/v) redox series featuring a terminal imido complex with triplet ground state. Chemical Science, 2018.
  • Reijerse, E.J., et al., Direct Detection of the Terminal Hydride Intermediate in [FeFe] Hydrogenase by NMR Spectroscopy. Angew Chem Int Ed Engl, 2018. 140(11): p. 3863-3866.
  • Rodriguez-Macia, P., et al., Sulfide Protects FeFe Hydrogenases From O-2. Journal of the American Chemical Society, 2018. 140(30): p. 9346-9350.
  • Rumpel, S., et al., H-1 NMR Spectroscopy of FeFe Hydrogenase: Insight into the Electronic Structure of the Active Site. Journal of the American Chemical Society, 2018. 140(1): p. 131-134.
  • Saric, I., et al., Impact of disorder on formation of free radicals by gamma-irradiation: Multi-frequency EPR studies of trehalose polymorphs. Journal of Physics and Chemistry of Solids, 2018. 123: p. 124-132.
  • Sommer, C., et al., A [RuRu] Analogue of an [FeFe]-Hydrogenase Traps the Key Hydride Intermediate of the Catalytic Cycle. Angew Chem Int Ed Engl, 2018. 57(19): p. 5429-5432.
  • Sommer, C., et al., Spectroscopic investigations of a semi-synthetic [FeFe] hydrogenase with propane di-selenol as bridging ligand in the binuclear subsite: comparison to the wild type and propane di-thiol variants. J Biol Inorg Chem, 2018.
  • Lukina, E.A., et al., Spin-dependent recombination of the charge-transfer state in photovoltaic polymer/fullerene blends. Molecular Physics, 2019. 117(19): p. 2654-2663.
  • Papini, C., et al., Bioinspired Artificial FeFe -Hydrogenase with a Synthetic H-Cluster. Acs Catalysis, 2019. 9(5): p. 4495-4501.
  • Reijerse, E., et al., Asymmetry in the Ligand Coordination Sphere of the [FeFe] Hydrogenase Active Site Is Reflected in the Magnetic Spin Interactions of the Aza-Propanedithiolate Ligand. The Journal of Physical Chemistry Letters, 2019.
  • Sanchez, M.L.K., et al., Investigating the Kinetic Competency of CrHydA1 [FeFe] Hydrogenase Intermediate States via Time-Resolved Infrared Spectroscopy. Journal of the American Chemical Society, 2019. 141(40): p. 16064-16070.
  • Sidabras, J.W., et al., Extending electron paramagnetic resonance to nanoliter volume protein single crystals using a self-resonant microhelix. Science Advances, 2019. 5(10): p. eaay1394.
  • Stegmaier, K., et al., Apdl and Aim32 Are Prototypes of Bishistidinyl-Coordinated Non-Rieske 2Fe-2S Proteins. Journal of the American Chemical Society, 2019. 141(14): p. 5753-5765.
  • Chongdar, N., et al., Spectroscopic and biochemical insight into an electron-bifurcating FeFe hydrogenase. Journal of Biological Inorganic Chemistry, 2020. 25(1): p. 135-149.
  • Le Vaillant, F., et al., Dialkyl Ether Formation at High-Valent Nickel. J Am Chem Soc, 2020. 142(46): p. 19540-19550.
  • Ma, Y.H., et al., Radical C-N Borylation of Aromatic Amines Enabled by a Pyrylium Reagent. Chemistry-a European Journal, 2020. 26(17): p. 3738-3743.
  • Massmig, M., et al., Carnitine metabolism in the human gut: characterization of the two-component carnitine monooxygenase CntAB fromAcinetobacter baumannii. Journal of Biological Chemistry, 2020. 295(37): p. 13065-13078.
  • Reijerse, E., J.A. Birrell, and W. Lubitz, Spin Polarization Reveals the Coordination Geometry of the FeFe Hydrogenase Active Site in Its CO-Inhibited State. Journal of Physical Chemistry Letters, 2020. 11(12): p. 4597-4602.
  • Sanchez, M.L.K., et al., The Laser-Induced Potential Jump: A Method for Rapid Electron Injection into Oxidoreductase Enzymes. Journal of Physical Chemistry B, 2020. 124(40): p. 8750-8760.
Group members

Group leaders (Deputies)

Dr. Edward J. Reijerse (Guest)

laboratory coordinator

Dr. Leonid Rapatskiy


Kaltum Abdiaziz
Dr. Shannon Bonke (Guest)
Dr. Sonia Chabbra
Dr. Yury Kutin (Guest)
Dr. Takuma Sato

PhD students

Nikolai Kochetov

EPR Research Group @ MPI CEC

The EPR Research Group at MPI CEC employs electron paramagnetic resonance (EPR) techniques to monitor and characterise paramagnetic states relevant to energy conversion and storage processes. Special focus is devoted to catalytically active transition metal ion complexes and proteins. We develop and utilise state-of-the-art EPR spectrometers ranging from GHz to THz frequencies. Our spectrometers are capable of a wide repertoire of CW/pulsed multi-resonance and multi-frequency EPR methods for powder, crystal, solution and in-situ experiments.

Currently we are working in the following fields of research:

In-situ EPR

An understanding of catalyst function enables rational modification and improvement, yet the most reactive, catalytically active states are typically only formed under operational conditions. This motivates our group to develop methodology for in situ / operando studies that allow EPR characterisation of catalysts for energy conversion reactions.
Reactions of interest presently include electrocatalytic water oxidation, with surface-confined or homogeneous transition metal catalysts. These studies require electrochemical measurements to be undertaken within the constraints of specific spectroscopic equipment, which we design and develop to ensure the conditions of analysis are truly relevant to operational catalytic conditions.
The applicability of EPR to any electrochemically derived/analysed species, is that single electron redox steps frequently involve EPR active states. The exceptional sensitivity of EPR to these states makes it powerful in examining the subtle, yet crucial, electronic effects that enable catalysis. EPR also allows selective analysis of paramagnetic oxidation states independent of diamagnetic species, thus providing selectivity that is unavailable with many other techniques - especially if the catalyst ground state is diamagnetic. In-situ EPR spectra are interpreted with extensive experiment-simulation comparisons and then correlated with catalytic measurements as well as with results from other techniques.

Contact: Shannon Bonke and Sonia Chabbra

High-spin transition metal ion states

EPR characterization of high-spin (electron spin, S > 1/2) transition-metal ion states targets the determination of their spin coupling parameters. The latter are sensitive probes of the coordination environment and electronic structure of the metal ion. In the case of catalytically active ions, spin couplings can provide unique information on their structure-function relationship. Furthermore, spin couplings determine the magnetic properties of molecular nanomagnets (MNM), which are considered as core units of future spintronic devices. However, the highly desired spin couplings are oftentimes not accessible with standard EPR spectrometers. This is the case for many high spin states with large zero field splittings. To improve this situation we develop and apply advanced field and frequency domain EPR methods, covering the GHz to THz EPR-excitation energy range. For THz-EPR experiments the Schnegg group established the joint research lab EPR4Energy with the the Helmholtz-Zentrum Berlin für Materialien und Energie (HZB).
Collaboration partners: Prof. Robert Bittl (FU Berlin), Dr. Karsten Holldack and Dr. Thomas Lohmiller (both HZB, Berlin).

Contact: Joscha Nehkorn

1. Nehrkorn, J.; Holldack, K.; Bittl, R.; Schnegg, A., J. Magn. Reson. 2017, 280, 10-19.



Paramagnetic states of metal proteins are studied by high-resolution multi-frequency and multi-resonance EPR techniques. Nuclear spins (e.g. 14/15N, 13C) of the first coordination sphere ligands (e.g. CN and CO) are used as reporters on the spin density distribution over a metal cluster. The latter can be probed by hyperfine spectroscopies (in our lab we use, ENDOR, HYSCORE and EDNMR), which allow determination of the hyperfine and quadrupole interactions. Optimum conditions for such experiments are achieved by single crystal EPR measurements. However, protein micro-crystals have typical sizes in the range 50 – 200 µm. Even at W-band, EPR investigation of these crystals is challenging. To lift this restriction, our group develops resonant structures adapted to the size and shape of nanoliter volume samples at X-, Q-, and W-band (9.5, 34, and 94 GHz respectively) up to the sub mm (244 GHz) and THz range.  In order to significantly advance EPR spectroscopy for samples with nanolitre volumes, a novel sub-mm sized X-band self-resonant micro-helix resonator has been developed in collaboration with Prof. Lubitz (see Fig. 4). The sensitivity enhancement obtained with this resonator makes protein single crystals of dimensions typical for x-ray crystallography accessible to advanced EPR techniques.

Contact: Ed Reijerse

2. Sidabras, J. W.; Duan, J.; Winkler, M.; Happe, T.; Hussein, R.; Zouni, A.; Suter, D.; Schnegg, A.; Lubitz, W.; Reijerse, E. J., Science Advances 2019, 5 (10), eaay1394.


EPR-on-a-Chip (EPRoC)

EPRoC are mm-sized sensors that incorporate a microwave source and detector on a surface array. This approach allows for a fundamental paradigm shift in EPR spectroscopy by facilitating in situ measurements of paramagnetic samples in environments which are difficult to access with conventional EPR setups in a cost-efficient way. We are developing EPR detection schemes that employ EPRoC sensors in a variety of different environments probing a wide range of sample morphologies in the scope of catalysis and battery research. We work on their integration in electrodes of electrochemistry experiments for the characterization of paramagnetic states in liquid solutions, e.g. in electrochemical cells, batteries or reactors. In addition, we are developing rotation-dependent EPRoC techniques for studies of microcrystals. The current generation of EPRoC sensors is capable of performing continuous wave and rapid scan EPR experiments. Partners: Prof. Dr. Klaus Lips (HZB), Prof. Jens Anders (Universität Stuttgart). Sponsored by the Federal Ministry of Education and Research (Grant reference number: 03SF0565A).

Contact: Markus Teucher