Reversibler Wasserstoffumsatz mit einer geschützten Hydrogenase

Internationales Team veröffentlicht Forschungsergebnisse in Nature Catalysis

Strukturbild der Hydrogenase aus Desulfovibrio desulfuricans: In seinem aktiven Zentrum sorgt ein Eisen-Schwefel-Cluster für die Oxidation des Wasserstoffs zu Protonen bzw. die Reduktion von Protonen zu Wasserstoff. Weitere Eisen-Schwefel-Cluster ermöglichen die Weiterleitung der Elektronen zum umgebenden Polymer.

Trotz ihrer exzellenten katalytischen Leistung gelten Enzyme wie das Wasserstoff-aktivierende Enzym Hydrogenase im Allgemeinen als ungeeignet für großtechnische Anwendungen. In der März-Ausgabe von Nature Catalysis berichtet ein Team der TU München, der Ruhr-Universität Bochum, des CNRS Marseille und des MPI CEC (Dr. James Birrell, Dr. Olaf Rüdiger) über ein maßgeschneidertes Polymer mit speziell entwickelten redoxaktiven Gruppen zum Schutz und zur elektrischen Verdrahtung einer hochaktiven, aber extrem fragilen Hydrogenase, um eine stabile reversible Katalyse zu ermöglichen, ohne die Effizienz der Energieumwandlung zu beeinträchtigen.

Schnell und doch zerbrechlich

Hydrogenasen, der Katalysator der Natur für die Erzeugung oder den Verbrauch von Wasserstoff, sind so aktiv und reversibel wie Platin, der beste Katalysator, der derzeit in Brennstoffzellen verwendet wird, aber sie sind empfindlich gegenüber extremen Bedingungen, wie z. B. der Einwirkung von Sauerstoff. Durch den Schutz der Hydrogenase in redoxaktiven Polymeren kann die Hydrogenase wochenlang unter Bedingungen arbeiten, unter denen sie sonst innerhalb von Minuten deaktiviert würde. In der Vergangenheit war dieser Schutz jedoch mit einem Nachteil verbunden: dem Verlust der Reversibilität. Dies bedeutete, dass eine große Menge an Energie als Wärme verloren ging, wenn Wasserstoff verbraucht wurde, und es war nicht möglich, sie in umgekehrter Richtung zu betreiben und Wasserstoff zu produzieren.

Ein Polymer für beide Wege

Der Durchbruch, der nun in Nature Catalysis beschrieben wurde, besteht darin, dass die Abstimmung der Affinität des Polymers für Elektronen (das so genannte Redoxpotential) eine schnelle Wasserstoffumwandlungskatalyse sowie eine Wasserstoffproduktion mit sehr geringem Energieverlust ermöglicht. Dies erwies sich als Herausforderung, da die Molekülgruppen, die Elektronen mit der Hydrogenase austauschen, ihr Redoxpotential zu positiveren Werten verschieben, wenn sie sich im Polymer befinden. Um dies zu kompensieren, musste das Redoxpotential der Gruppen vor dem Einbau in das Polymer auf negativere Werte eingestellt werden. Dies ermöglichte den Bau von hocheffizienten wasserstoffumwandelnden Brennstoffzellen und wasserstoffproduzierenden Wasserelektrolyseuren unter Verwendung von Hydrogenase.

Eine Blaupause für unkonventionelle Katalysatoren in Brennstoffzellen und Elektrolyseuren

Mit diesen Fortschritten ist die Hürde für die Aufrechterhaltung der Reversibilität bei gleichzeitigem Schutz der empfindlichen Katalysatoren in Anwendungen nun aufgehoben. Es sind noch weitere Schritte erforderlich, um solche Systeme wettbewerbsfähig mit platinbasierten Katalysatoren zu machen. Nichtsdestotrotz werden die Erfahrungen, die bei dem Erreichen der Reversibilität gemacht wurden, auf andere hochaktive und skalierbare, aber empfindliche Katalysatoren in der Energieumwandlung und Elektrosynthese übertragbar sein. Unmittelbare Ziele sind Enzyme zur Herstellung von flüssigen Kraftstoffen oder wertschöpfenden Chemikalien aus Kohlendioxid unter Verwendung erneuerbarer Energie.

 

Original-Publikation: Hardt, S., Stapf, S., Filmon, D.T. et al. (2021). Reversible H2 oxidation and evolution by hydrogenase embedded in a redox polymer film. Nat Catal. https://doi.org/10.1038/s41929-021-00586-1

Wissenschaftliche Ansprechpartner: Dr. James Birrell , Dr. Olaf Rüdiger

Pressemitteilung der TU München